Disclaimer

- This document has been prepared by Sensorion (the "Company") and is provided for information purposes only. This document does not purport to contain comprehensive or complete information about the Company and is qualified in its entirety by the business, financial and other information that the Company is required to publish in accordance with the rules, regulations and practices applicable to companies listed on Euronext Paris. No reliance may be placed for any purposes whatsoever on the information or opinions contained in this document or on its accuracy or completeness.
- This presentation does not constitute an offer to sell, a solicitation of, or an invitation to subscribe for or to buy, securities of Sensorion in any jurisdiction.
- The information and opinions contained in this document are provided as of the date of this document only and may be updated, supplemented, revised, verified or amended, and thus such information may be subject to significant changes. The Company is not under any obligation to update the information or opinions contained herein which are subject to change without prior notice.
- The information contained in this document has not been subject to independent verification. No representation, warranty or undertaking, express or implied, is made as to the accuracy, completeness or appropriateness of the information and opinions contained in this document. The Company, its subsidiaries, its advisors and representatives accept no responsibility for and shall not, under any circumstance, be held liable for any loss or damage that may arise from the use of this document or the information or opinions contained herein.
- This document contains information on the Company’s markets and competitive position, and more specifically, on the size of its markets. This information has been drawn from various sources or from the Company’s own estimates which may not be accurate and thus no reliance should be placed on such information.
- This document contains certain forward-looking statements. These statements are not guarantees of the Company’s future performance. These forward-looking statements relate to the Company’s future prospects, developments and marketing strategy and are based on analyses of earnings forecasts and estimates of amounts not yet determinable. Forward-looking statements are subject to a variety of risks and uncertainties as they relate to future events and are dependent on circumstances that may or may not materialize in the future. Forward-looking statements cannot, under any circumstance, be construed as a guarantee of the Company’s future performance and the Company’s actual financial position, results and cash flow, as well as the trends in the sector in which the Company operates, may differ materially from those proposed or reflected in the forward-looking statements contained in this document. Important factors that could cause actual results to differ materially from the results anticipated in the forward-looking statements include those discussed or identified in the “Risk Factors” section of our “Document de référence” registration document filed with the Autorité des marchés financiers on Sept 6th, 2017 under n°R.17-062 (a copy of which is available on www.sensorion-pharma.com). Even if the Company’s financial position, results, cash-flows and developments in the sector in which the Company operates were to conform to the forward-looking statements contained in this document, such results or developments cannot be construed as a reliable indication of the Company’s future results or developments. The Company does not undertake any obligation to update or to confirm projections or estimates made by analysts or to make public any correction to any prospective information in order to reflect an event or circumstance that may occur after the date of this document.
- Certain figures and numbers appearing in this document have been rounded. Consequently, the total amounts and percentages appearing in the tables may not necessarily equal the sum of the individually rounded figures, amounts or percentages.
- All persons accessing this document must agree to the restrictions and limitations set out above.
Experienced Leadership Team

Nawal Ouzren
Chief Executive Officer, MSc
- 15+ years at GE, Baxter, Shire
- Solid drug development experience, including global marketing, market access and market development

Gilbert Wagener
Chief Medical Officer
MD, PhD, MBA
- 25+ years at Bayer, Genzyme
- Expert in clinical development of small molecules and ATMP

Jurgen Heitmann
Business Development Expert
PhD physiology (inner ear)
- 20+ years at Takeda, Novartis, Auris Medical, Nycomed, McKinsey
- Solid experience in in-licensing, out-licensing, corporate strategy

Paul Bikard
Administration & Finance Director
MSc Lyon Business school
- 20+ years as auditor (Coopers & Lybrand-PWC, Andersen-E&Y) and CFO (Transgene, Prestwick Chemical)
- Solid Administration & Finance experience of SMEs

Nitza Thomasson
Gene Therapy expert
PhD neurosciences
- 15+ years at Gensight, Brainever, Gecko, Sanofi
- Diverse experiences in preclinical phase 1/2 and CMC in Gene therapy

Jonas Dyhrfjeld-Johnsen
VP Research & Translational Development, PhD
- 15+ years research in CNS and inner-ear
- PhD in Neuroscience and post-doctoral research (UC Irvine-CA, Harvard Medical School-Boston, USA)
A Clinical-Stage Biopharmaceutical Company Focused on Developing Novel Therapies to Restore, Treat, and Prevent Inner Ear Disorders

Sensorion profile
- Clinical-stage biopharmaceutical company
- 20 employees, 16 in R&D, Offices in Montpellier and Paris, INSERM spin-off in 2009
- A broad portfolio: 2 small molecules in phase II and embarking in a promising Gene Therapy program with Pasteur Institute
- Unique R&D technology Platform to expand understanding of the pathophysiology, etiology, biomarkers of inner ear related diseases

Inner ear: an attractive domain of expertise
- Significant unmet medical needs with little effective therapeutic options
- Big untapped market evaluated at 10B+
- An important Central Nervous System therapeutic area, recently attracting successful financing
- Will allow significant opportunities in Business Development & Licensing

A compelling and unique investment opportunity
- Scientific team, solid capabilities
- Strategic agreements with world class experts as Pasteur Institute and Cochlear LTD
- Attractive valuation

Positive momentum in the market
- Favourable regulatory environment with new FDA guidelines to support Gene Therapy development
- Capital availability to enable execution of several GT programs
- Active financial environment (IPO and M&A) demonstrating appetite for GT
Building an Attractive Pipeline in the Inner Ear Space

1. Received Rare Paediatric Designation and is eligible for Priority Review Voucher (US)

<table>
<thead>
<tr>
<th>Product</th>
<th>In-vitro POC</th>
<th>In-Vivo POC</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2/ Clinical POC</th>
<th>ODD</th>
<th>Next milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-111</td>
<td></td>
<td></td>
<td>Comparison study to meclizine and placebo for lack of sedation</td>
<td></td>
<td></td>
<td></td>
<td>2H 2018</td>
</tr>
<tr>
<td>SENS-111</td>
<td></td>
<td></td>
<td>Acute Unilateral Vestibulopathy</td>
<td></td>
<td></td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td>Sudden Sensorineural Hearing Loss</td>
<td></td>
<td>✓ [EU]</td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>SENS-XXX</td>
<td></td>
<td></td>
<td>Confidential indication</td>
<td></td>
<td></td>
<td></td>
<td>1H 2020</td>
</tr>
<tr>
<td>PREVENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td>Cisplatin Induced Ototoxicity</td>
<td></td>
<td>✓ [US]²</td>
<td></td>
<td>1H 2020</td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td>Aminoglycoside induced Ototox.</td>
<td></td>
<td></td>
<td></td>
<td>1H 2019</td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td>Hearing preservation after cochlear implantation</td>
<td></td>
<td></td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>RESTORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-XXX</td>
<td></td>
<td></td>
<td>Otoferlin deficiency</td>
<td></td>
<td></td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>SENS-XXX</td>
<td></td>
<td></td>
<td>Usher syndrome</td>
<td></td>
<td></td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>DISCOVERY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinnitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1H 2019</td>
</tr>
<tr>
<td>Confidential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1H 2019</td>
</tr>
</tbody>
</table>
The Pasteur Institute Partnership: A Fundamental Stepping Stone in the Transformational Journey of Sensorion

- Letter of intent to exclusively negotiate a framework agreement to obtain exclusive licenses to gene therapy programs
- Right of first negotiation

- World-class scientific minds having significantly contributed to gene and protein discoveries in the hearing field
- Team led by Pr PETIT who will lead the future French Hearing Institute
- 4 potential gene therapy programs to correct monogenic forms of hereditary hearing loss
- Vectors bank
- Well-recognized publications
Prof. Christine Petit
Chair of the Scientific Advisory Board

- Winner of the 2018 Kavli Prize in Neuroscience, which recognizes scientists for pioneering advances in our understanding of existence at its biggest, smallest, and most complex scales
 - Awarded for cutting-edge research exploring the genetics of hereditary deafness
 - Research sheds light on the molecular machinery of hearing transduction

- Professor at College de France, Chair of Genetics and Cellular Physiology, Professor at Institut Pasteur and Head of the Laboratory of Genetics and Physiology of Hearing of the Pasteur Institute, affiliated to INSERM (UMRS 1120) and Sorbonne University (Paris)

- Winner of numerous awards, including the Association for Research In Otolaryngology in February 2018 (ARO) Lifetime Achievement Award of Merit (USA), the International Brain Prize from Grete Lundbeck Foundation, The Hughes Knowles Prize (USA), the Louis-Jeantet for Medicine Prize (Europe, 2006), the L’Oréal Unesco Award recognizing outstanding Women in Sciences (Europe), and the Grand Prize from the INSERM (France)

- Member of the French and American Sciences Academies and the American Medical Academy
Sensorion as the Partner of Choice of Pasteur Institute

High-throughput screening platform to identify drugs candidates

In-vivo and in-vitro preclinical models to identify targets and **biomarkers** as well as validate MOA*

Inner ear and neurosciences experience within the R&D team

Clinical program development and execution

Collaboration with **Cochlear Ltd**

Global experience in **policy** & **regulatory skills**

* MOA: Mechanism Of Action
Leveraging a Productive Ecosystem with Complementary Expertise: From Science to Patients’ Bed Side

- **Institut Pasteur**
 - Breakthrough science

- **Necker**
 - Clinical Gene Therapy experience and access to patient cohorts

- **Sensorion**
 - Drug development

- **Powerful combination leveraging synergistic capabilities to lead successful gene therapy development**
Shaping a Roadmap to Create Value

01 Enlarge the pipeline

- Discussions with big pharma and biotechs on additional late stage assets (Phase 2 ready)

02 Accelerate IND filing for Gene Therapy programs through strategic partnerships

- Ongoing discussions with players from the gene therapy field

03 Attract pharma/biotech for co-development/partnering

- Explore options to partner some assets to finance pivotal studies ie: small molecules
- Conclude discussions on regional deals ie: SENS-111 in Japan

Confidential and Proprietary – Copyright by Sensorion – 2018 – All Rights Reserved
Restorative Breakthrough
2 Gene Therapies
Causes of Hearing Loss (HL): Genetic and Non-Genetic

32 M Kids suffer from HL, WHO - 2012

The most frequent causes of hearing loss:
- Exposure to loud noise
- Natural Aging
- Heredity
- Head Injury
- Ototoxic Medications
- Illness

Source: Mayo Clinic, © Starkey Hearing Technologies. All Rights Reserved.

Genetics causes for HL : 3.75 M kids < 5 y

- Hearing loss due to non-genetic causes: 50%
- Hearing loss due to genetic causes: 50%

7.5 M Children < 5 years old WW

Sources: Morton 2006, Koshlar et al., 2007 ; Shearer et al. 2017
Hereditary Hearing Loss (HHL): A Large Unmet Medical Need

Lack of standard of care for HHL

- 2.5 M children with profound hearing loss WW are candidates to cochlear implants (CI)
- Less than 10% are implanted – major road-block to CI distribution and use
- Ultimate goal: acquire the language and mainstream schooling

Sources: Papsin et al. 2007; Cosetti et al. 2010; Sahin et al. 2017

HHL children lacking treatment: > 3 M

3.75 M kids < 5 with HL due to genetic causes WW

- Syndromic hearing loss: 30%
- Non syndromic hearing loss: 70%

- 787,500
- 2,625 M

- Significant unmet medical need with low level of Cochlear implantation

Sources: Koshlar et al., 2007; Shearer et al. 2017 Schieffield et al. 2018
Gene Therapy: A Powerful Option for Hereditary Monogenic Hearing Loss Treatment

Hereditary Hearing Loss (HHL)

- Genetic deafness approx. 400 genes
- HHL mostly monogenic
- Patients population characterized (e.g. 111 genes identified for nonsyndromic HHL)
- Auditory cells are not dividing
- Local injection (via oval window)

AAV-based vector for clinical delivery

- Clinical trials within the last 10 years:
 - Completed: 44
 - Active: 33
 - Recruiting: 70
 - Not yet recruiting: 10
- Two AAV-based GT medicinal products on the market (6 GTMP in total)

Source: ClinicalTrials.gov
Pasteur Gene Therapy Programs & IP

<table>
<thead>
<tr>
<th>Usher syndrome</th>
<th>Sans</th>
<th>AAV2/8</th>
<th>IHC & vestibular receptors</th>
<th>Intra cochlear</th>
<th>Positive results in UshG1 -/- mice</th>
<th>Confidential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otoferline deficiency</td>
<td>Otof</td>
<td>Confidential</td>
<td>IHC</td>
<td>Intra cochlear</td>
<td>Confidential</td>
<td>Confidential</td>
</tr>
<tr>
<td>Confidential</td>
<td>TBD</td>
<td>To be disclosed</td>
<td>To be disclosed</td>
<td>Intra cochlear</td>
<td>Confidential</td>
<td>Confidential</td>
</tr>
</tbody>
</table>

Confidential and Proprietary – Copyright by Sensorion – 2018 – All Rights Reserved
A Deep Pipeline in the Inner Ear

1. Received Rare Pediatric Designation and is eligible for Priority Review Voucher (US)

<table>
<thead>
<tr>
<th>Product</th>
<th>In-vitro POC</th>
<th>In-Vivo POC</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2/ Clinical POC</th>
<th>ODD</th>
<th>Next milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓ [EU]</td>
<td>2H 2019</td>
<td></td>
</tr>
<tr>
<td>SENS-XXX</td>
<td>Confidential indication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREVENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓ [US] 1</td>
<td>1H 2020</td>
<td></td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓ [US] 1</td>
<td>1H 2020</td>
<td></td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓ [US] 1</td>
<td>1H 2020</td>
<td></td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓ [US] 1</td>
<td>1H 2020</td>
<td></td>
</tr>
<tr>
<td>RESTORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-XXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-XXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISCOVERY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinnitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidential</td>
<td>Confidential and Proprietary – Copyright by Sensorion – 2018 – All Rights Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Usher Type 1 Syndrome: Most Severe Expression of the Disease

Usher type 1 - a rare genetic disorder

- **Symptoms description**: patients with USH1 have severe to profound congenital bilateral SNHL and congenital vestibular dysfunction; retinitis pigmentosa develops during childhood. Syndromic form.
- **Biological description**: Mutation on USH1C, MYO7A, CDH23, PCDH15, USH1G, CIB2 gene, autosomal recessive. Inner hair cell lacking USH/Sans protein cannot develop, maintain and have a functional hair bundle.

Affected population

- **Average Prevalence 1:100 000**
- Represent 4-6% of people with hereditary deafness
- EU = 25 700 (1/29 000) and US = 15 000 (1/23 000)

Gap in care and burden of care

- **Delayed diagnosis** - not suspected at a 1st sight
- **No standard of care**, cochlear implant in less than 10% of the patients: > 35 000 remain candidate to another therapeutic alternative

Sources: Morton 2007; Shearer et al. 2017; Scheffield et al. 2018

Sources: Papsin et al. 2007; Sahin et al. 2017
Underlying physiology

Stereocilia of the cochlea and protein complexes involved in the mechanoelectrical transduction of auditory stimulus.

Cochlear stereocilia

- Normal mice
- Ushg1-/- mice
- Treated Ushg1-/- mice

Vestibular stereocilia

Restoration of stereocilia physiology using AAV8-SANS allows an increase in electric function.
OTOFERLIN Deficiency Responsible for up to 8% of All Prelingual Non-Syndromic Deafness

Otoferlin (OTOF) deficiency - a rare genetic disorder

- **Symptoms description**: patients with mutations in OTOF suffer from profound sensorineural prelingual non-syndromic hearing loss
- **Biological description**: Mutation of OTOF gene (locus DFNB9), autosomal recessive transmission. Synaptopathy affecting ribbon on inner hair cells. Cochlear nerve is not affected.

Affected population

- **Estimated prevalence in 0-4 year** population suffering from nonsyndromic hereditary hearing loss: 4-8%
- Represent between 15 000 and 20 000 new cases per year

Unmet medical need and burden of care

- **Delayed diagnosis** – not suspected at a 1st sight
- **No standard of care**, cochlear implant in less than 10% of the patients: > 14 000 children remain candidate to another therapeutic alternative

Sources: Choi et al; 2009; Iwasa et al. 2013; Shearer et al., 2015

Sources: Shearer et al. 2017 Scheffield et al. 2018

Sources: Papsin et al. 2007; Cosetti et al. 2010; Sahin et al. 2017
High Level Value Creation Roadmap to Create Value

<table>
<thead>
<tr>
<th></th>
<th>Usher</th>
<th>Otoferline</th>
<th>Confidential</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2H 2019</td>
<td>End 2020</td>
<td>End 2020</td>
<td>Confidential</td>
</tr>
<tr>
<td>AAV design &</td>
<td>2H 2020</td>
<td>2H 2020</td>
<td>End 2021</td>
<td>2022</td>
</tr>
<tr>
<td>optimisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Promoter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Confirmatory PoC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>process dev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Tech. Transfer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• USP/DSP dev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Analytical dev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Tox & GMP prod.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonclinical prog.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GLP Tox</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Biodistribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Shedding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Immunogenicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Safety pharm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory path</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Scientific Advice / PreIND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ODD & PIP strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IMPD/IND subm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1/2 study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascending dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension cohort at MTD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety & efficacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Confidential and Proprietary – Copyright by Sensorion – 2018 – All Rights Reserved
A Two Year Development Plan for the First Patient Dosed

<table>
<thead>
<tr>
<th></th>
<th>YEAR 1</th>
<th></th>
<th>YEAR 2</th>
<th></th>
<th>YEAR 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Pharmaco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vitro MoA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vivo Otof-/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Line Dev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Dev. & Analytical work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tox Batch DS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tox Batch DP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability studies for DP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability studies for DS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formulation work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMP Batch DS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMP Batch DP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability studies for GMP DP according to ICG standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability studies for GMP DS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Initiation of CMC activity 6/9 mo post contract execution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonclinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio & immune assays dev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLP Toxicity/Biodistribution study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITF meeting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA/preIND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODD EU/US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIP/SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTA/IND submission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1a/2b trial in patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Confidential and Proprietary – Copyright by Sensorion – 2018 – All Rights Reserved
We plan to initiate CMC activity 6 to 9 months after LOI signed with the CMO
TREATMENT
2 compounds and 1 Gene Therapy
A Deep Pipeline in the Inner Ear

1. Received Rare Paediatric Designation and is eligible for Priority Review Voucher (US)

<table>
<thead>
<tr>
<th>Product</th>
<th>In-vitro POC</th>
<th>In-Vivo POC</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2/ Clinical POC</th>
<th>ODD</th>
<th>Next milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-111</td>
<td></td>
<td>Comparison study to meclizine and placebo for lack of sedation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2H 2018</td>
</tr>
<tr>
<td>SENS-111</td>
<td></td>
<td>Acute Unilateral Vestibulopathy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td>Sudden Sensorineural Hearing Loss</td>
<td></td>
<td>✓ [EU]</td>
<td></td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>SENS-XXX</td>
<td></td>
<td>Confidential indication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1H 2020</td>
</tr>
<tr>
<td>PREVENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓ [US] 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td>Cisplatin Induced Ototoxicity</td>
<td></td>
<td>✓ [US] 1</td>
<td></td>
<td></td>
<td>1H 2020</td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td>Aminoglycoside Induced Ototoxicity</td>
<td></td>
<td></td>
<td>✓ [US] 1</td>
<td></td>
<td>1H 2019</td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td>Hearing preservation after cochlear implantation</td>
<td></td>
<td></td>
<td>✓ [US] 1</td>
<td></td>
<td>2H 190</td>
</tr>
<tr>
<td>RESTORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓ [US] 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-XXX</td>
<td></td>
<td>Otoferlin deficiency</td>
<td></td>
<td></td>
<td>✓ [US] 1</td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>SENS-XXX</td>
<td></td>
<td>Usher syndrome</td>
<td></td>
<td></td>
<td>✓ [US] 1</td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>DISCOVERY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinnitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1H 2019</td>
</tr>
<tr>
<td>Confidential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1H 2019</td>
</tr>
</tbody>
</table>

Confidential and Proprietary – Copyright by Sensorion – 2018 – All Rights Reserved
What is AUV:
Acute, severe unilateral vestibular dysfunction giving the sensation that you or your surroundings are moving (spinning, whirling or moving vertically or horizontally)

Incidence:
Between 3.5 to 15.5 per 100,000 people
(68,000 patients in 2017 in G7 countries)

Sudden occurrence of AUV:
Crisis lasts between 4 and 7 days

Complications:
The AUV crisis can lead to long-term complications in ~50% of the cases
These complications significantly impact patients’ quality of life due to:
- Dizziness, imbalance, abnormal gait, unsteadiness increasing the risk of severe fall by 12
- Psychological handicaps and disabilities

“
AUV is assumed to be an ideal model for vestibular diseases. If this trial shows a benefit, the drug is assumed to work in other diseases leading to dizziness and vertigo.
”

Pr. Michael Strupp
Ludwig-Maximilians-University Munich, Germany (KOL event, Nov. 29, 2016)

1 Company estimate based on publicly available data (in the US, Japan, Germany, France, the UK, Italy and Spain)
SENS-111 for Acute Unilateral Vestibulopathy

SENS-111

First-in-class treatment
- First-in-class oral H4 receptor antagonist
- Mechanism of action well-defined and understood (H4R antagonist)
- SENS-111 acts through modulation of vestibular neuron excitability. It is not sedative.

IP protection
- 3 composition of matter and use patent families
- IP issued in all major markets

SENS-111 demonstrated activity in phase 1b
- 100 healthy volunteers enrolled
- Reduced vertigo symptoms from doses of 50 mg/day to 200 mg/day using caloric induction
- No sedation and significant adverse events reported

2 phase 2 trials underway
- Competitive and compelling target profile is an efficacious and non-sedative product
SENS-111 Phase 2a Study: Assess the Effect of SENS-111 on Sedation and Cognitive Disturbances in Subjects Susceptible to Evoked Vestibular Imbalance

Randomized Treatment
1 center in Europe

PRIMARY ENDPOINTS AND TREATMENT SEQUENCE
- Pepsy psychomotor test battery
- 32 subjects received SENS-111 100mg, 200mg, placebo arm, Meclizine 50mg arm
- 4 randomized sequences each with placebo

4-way, cross-over randomized, double-blind, double dummy, repeated measures, placebo-controlled & meclizine calibrated

SENS-111 showed no sedative effects in human volunteers in contrast to Meclizine

Subjects had 4x 1-day assessment, with a 7-day wash-out period between sessions.
SENS-111 Efficacy Phase 2 Program: 100 and 200 mg vs. Placebo

25 CLINICAL SITES
In Europe, US, Korea

1 PRIMARY ENDPOINT
Vertigo intensity (visual analogic scale)

20% IMPROVEMENT vs PLACEBO
105 patients

PLANNING
Q2 2017 Centers opening
H2 2018 readout

A multicentre, randomized, double-blind, placebo-controlled study

SCREENING
TREATMENT
FOLLOW-UP

Randomization

Dose 1: 100 mg
Dose 2: 200 mg
Placebo

Visit
D1
D2
D3
D4
D5
D14
D28

Visit
Visit
Visit
Visit
Visit
Visit
Visit

Confidential and Proprietary – Copyright by Sensorion – 2018 – All Rights Reserved
What is SSNHL:
The sudden onset of a significant hearing loss due to dysfunction of the cells of the cochlea and central auditory structures.

Incidence:
Between 27 to 35 per 100,000 people (218,000 patients in 2017 in G7 countries). >70% cases are idiopathic, known causes include noise/head trauma, ischemia and infection.

Sudden occurrence of SSNHL:
Hearing loss develops over less than 72 hrs, hearing sensitivity is reduced by at least 1,000 fold in the affected ear(s).

Complications:
More than 50% suffer from permanent, disabling hearing loss, mostly those with initial severe to profound hearing loss.
Complications significantly impact patients’ quality of life due to:
- Difficulty communicating, social isolation, cognitive decline
- Accompanying tinnitus

Acute need for safe, effective drugs is clear

1 Company estimate based on publicly available data (in the US, Japan, Germany, France, the UK, Italy and Spain)
SENS-401 for Sudden Sensorineural Hearing Loss

SENS-401

- First-in-class treatment
- IP protection
- SENS-401 demonstrated safety and PK in phase 1
- Phase 2 trial planned for 2018

First-in-class treatment
- First-in-class oral 5HT₃ receptor antagonist & calcineurin inhibitor
- The Mode of Action (MoA) is well-defined and understood
- SENS-401 acts through reduction of cochlear cell death and neurodegeneration

IP protection
- 2 patent families filed
- Orphan Drug Designation from EMA

SENS-401 demonstrated safety and PK in phase 1
- 36 healthy volunteers enrolled in a double-blind, randomized, multiple ascending dose design (7 days)
- No serious or significant adverse events reported, safety profile comparable to placebo
- Pharmacokinetics match effective systemic exposures in preclinical model

Phase 2 trial planned for 2018
- Trial to be conducted in the US and Europe
SENS-401: Preclinical Data in Noise-Induced Cochlear Lesions

A daily oral administration of SENS-401 reduces auditory deficit, improves recovery and reduces hair cell loss

MODEL
- Randomized treatment post-noise induced trauma (2h exposure at 120 dB) in rats receiving either twice daily placebo or SENS-401 PO for 28 days

BENEFIT
- Regulatory threshold for efficacy (>10 dB improvement)
- Significant effects with treatment initiation delay up to 96 hrs

Histology of hair cell layers

Significant hair cell loss

Limited hair cell loss

Confidential and Proprietary – Copyright by Sensorion – 2018 – All Rights Reserved
401-SSNHL Phase 2 study: A multicenter, randomized, double-blind, placebo-controlled study (prior dose selection)

50 CLINICAL SITES
- Global

1 PRIMARY ENDPOINT
- Audiometry

10 dB IMPROVEMENT
- 3 most affected frequencies
- Vs baseline
- 270 patients

SCREENING
- Visit 1: Screening
- Visit 2: Inclusion

DOUBLE-BLIND TREATMENT
- Randomization
- SENS-401 43.5mg BID
- SENS-401 29mg BID
- Placebo
- Visit 1 to Visit 5
 - D1: Visit 1
 - D7: Visit 2
 - D14: Visit 3
 - D28: Visit 4
 - Visit 5: End of treatment

FOLLOW-UP
- Visit 6: D84
- End of study

PLANNING
- Q1 2019:
 - Sites opening
- Q4 2019:
 - Interm. Readout
- Q2 2020:
 - Final Results

GLOBAL CLINICAL SITES
- 1

PRIMARY ENDPOINT
- Audiometry

IMPROVEMENT
- 10 dB
- 3 most affected frequencies
- Vs baseline
- 270 patients
PREVENTION
3 Programs
A Deep Pipeline in the Inner Ear

1 Received Rare Paediatric Designation and is eligible for Priority Review Voucher (US)

<table>
<thead>
<tr>
<th>Product</th>
<th>In-vitro POC</th>
<th>In-Vivo POC</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2/ Clinical POC</th>
<th>ODD</th>
<th>Next milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comparison study to meclizine and placebo for lack of sedation</td>
<td></td>
<td>2H 2018</td>
</tr>
<tr>
<td>SENS-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acute Unilateral Vestibulopathy</td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sudden Sensorineural Hearing Loss</td>
<td>✔️ [EU]</td>
<td>2H 2019</td>
</tr>
<tr>
<td>SENS-XXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Confidential indication</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREVENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cisplatin Induced Ototoxicity</td>
<td>✔️ [US]</td>
<td>1H 2020</td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aminoglycoside Induced Ototoxicity</td>
<td></td>
<td>1H 2019</td>
</tr>
<tr>
<td>SENS-401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hearing preservation after cochlear implantation</td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESTORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENS-XXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Otoferlin deficiency</td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>SENS-XXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Usher syndrome</td>
<td></td>
<td>2H 2019</td>
</tr>
<tr>
<td>DISCOVERY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinnitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1H 2019</td>
</tr>
<tr>
<td>Confidential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Confidential and Proprietary – Copyright by Sensorion – 2018 – All Rights Reserved</td>
<td></td>
<td>1H 2019</td>
</tr>
</tbody>
</table>
Cisplatin-Induced Ototoxicity (CIO) Severely Impacts up to 60% of the Children Treated

What is CIO:
Cisplatin administration for chemotherapeutic treatment of cancer damages the inner ear and leads to hearing loss, tinnitus and dizziness

Incidence:
Between 350 to 450 per 100,000 people (~500,000 patients in 2017 in G7 countries)¹

Risk factors for CIO:
Young age, individual and cumulative cisplatin doses during chemotherapy

Complications:
CIO leads to permanent inner ear problems in 50-60% of cases
These complications significantly impact patients’ quality of life due to:
- Hearing loss, tinnitus and dizziness impacting daily life activities
- Problems in language acquisition and learning for paediatric patients
- Difficulty communicating, social isolation, cognitive decline
Potential treatments must not interfere with cisplatin efficacy

Acute need for safe, effective and non-interfering drugs is clear

¹ Company estimate based on publicly available data (in the US, Japan, Germany, France, the UK, Italy and Spain)

"Ototoxicity is a well-established toxicity associated with a subgroup of antineoplastic therapies that includes platinum chemotherapy... The impact of ototoxicity on subsequent health-related and psychosocial outcomes in these patients can be substantial, and the burden of morbidity related to ototoxic agents is particularly high in very young children."

Landier
Cancer
February 2016, 122:1647-58
SEN S-401 for Cisplatin-Induced Ototoxicity

SEN S-401

- First-in-class treatment
 - First-in-class oral 5HT₃ receptor antagonist & other undisclosed mechanism of action (MoA)
 - The MoA is well-defined and understood (5HT3 antagonism, undisclosed MoA)
 - SENS-401 acts through reduction of cochlear cell death and neurodegeneration

- IP protection
 - 2 patent families filed
 - Orphan Drug Designation for paediatric patients from US FDA

- SENS-401 demonstrated safety and PK in phase 1
 - 36 healthy volunteers enrolled in a double-blind, randomized, multiple ascending dose design (7 days)
 - No serious or significant adverse events reported, safety profile comparable to placebo
 - Pharmacokinetics match effective systemic exposures in preclinical model

- Phase 2 trial ready to start in 2019
 - Trial to be conducted in the US and Europe in paediatric population

Confidential and Proprietary – Copyright by Sensorion – 2018 – All Rights Reserved
SENS-401 Significantly Reduces Cisplatin-Induced Hearing Loss and Outer Hair Cell Death

Treatment
Placebo and SENS-401 at 6.6 mg/kg, 13.2 mg/kg or placebo once daily before and for 13 consecutive days after cisplatin infusion

Results: ABR Threshold Shift at Day 14
Significant improvement versus placebo
- 23-29 dB, up to 65% reduction with 6.6 mg/kg
- 22-29 dB, up to 73% reduction with 13.2 mg/kg

Results: DPOAE Amplitude Loss
Significant improvement versus placebo
- 1.5-19 dB, up to 78% reduction with 6.6 mg/kg
- -1.2-14.6 dB up to 58% reduction with 13.2 mg/kg (p:0.08)

Cochleograms
Significant enhancement of OHC survival 22-264% for both doses

Pharmacokinetics
- Dose dependent plasma concentrations and PK profile
- Inner ear exposure: about 50% plasma exposure
- Perilymph exposure: about 30% plasma exposure

Conclusions: SENS-401 effective in models of CIO on ABR, DPOAE and OHC preservation. Concentrations are higher than IC_{50} calcineurin inhibition
Aminoglycoside-Induced Ototoxicity Impacting Particularly Cystic Fibrosis Patients

What is AIO:
Parenteral aminoglycosides for life-threatening bacterial infections (pulmonary exacerbation in cystic fibrosis patients, drug-resistant tuberculosis, mycobacterium infection, prophylaxis in pre-term neonates) damages the inner-ear and leads to hearing loss, tinnitus and dizziness.

Incidence:
20-80% of patients receiving parenteral aminoglycosides (reports vary depending on diagnostic measures and patient populations) with up to 85 dB hearing loss at high frequencies.¹

Risk factors for Aminoglycoside-induced ototoxicity:
Older age/cumulative aminoglycoside doses, co-morbidities, co-medications.

Complications:
Hearing loss, tinnitus and dizziness significantly impacting patients’ quality of life and daily life activities with
 - Problems in language acquisition and learning for pediatric patients
 - Difficulty communicating, loss of work, social isolation, cognitive decline

Acute need for safe and effective drugs is clear

Cystic Fibrosis (CF) is the most common life threatening, autosomal recessive disorder in the Caucasian population. Patients with CF constitute a group that use aminoglycosides (AGS) at a high rate due to the chronic colonization by Pseudomonas aeruginosa (P. aeruginosa) and frequent pulmonary exacerbation... multiple exposures to AGS in CF patients can lead to cumulative damage to the auditory and vestibular systems over the lifetime of the patients, the symptoms of which are largely irreversible and disabling.

Handelsman et al.
Paediatric Pulmonology
June 2017; 52:1157–1162

SENS-401 Significantly Enhances Cochlear Hair Cell Survival After Aminoglycoside Exposure In Vitro

High Content Screening Assay
Organ of Corti explant cultures were exposed to 1 mM gentamicin for 24h (Corbacella et al. 2004, Hearing Res) with or without SENS-401 co-application. Hair cell survival was quantified using continuous Live-Cell Imaging.

Results: Early and Persistent Hair Cell Survival
Significant improvement versus gentamicin alone
- 10-110% improvement over gentamicin alone 24-36 hours after application in the acute phase
- 20-80% improvement over gentamicin alone 120 hours after application

Ongoing experiments in vivo

Conclusions:
SENS-401 enhances cochlear hair cell survival after aminoglycoside exposure in vitro
Mechanisms of ototoxicity and hearing loss similar to CIO
Confirmatory in vivo experiments in translationally relevant model ongoing
Cochlear Ltd Partnership: To Improve Hearing Outcomes of Patients Receiving Cochlear Implants with SENS-401

Strategic Rationale For A Complementary Partnership

- Collaboration signed in December 2017
 - Cochlear Ltd invested €1.6 million in shares of Sensorion
 - In exchange, Cochlear received a right of first negotiation for a global license to use SENS-401 in patients with certain implantable devices
- Sensorion and Cochlear Ltd to study SENS-401 in combination with cochlear implants
- First preclinical results expected in H2 2019
Cochlear Ltd Highlighted Our Partnership in Their Last Investors Day Presentation

- Cochlear is actively scanning pharma and biological therapies for treatment of hearing loss
- Collaborating with a number of partners in the areas of oto-protection and regeneration
- Combination therapies (device + drug) are likely to emerge in the coming years, enhancing the CI therapy
- In December 2017, Cochlear formed a strategic collaboration with Sensorion (France) focused on improving hearing outcomes in patients with cochlear implants

\(^1\) COCHLEAR Ltd Presentation Investors Day May 2018
Discovery Focus
Tinnitus Model Development & Drug Candidate Testing

Tinnitus induction and development

The current consensus considers tinnitus as maladaptive central auditory pathway plasticity of peripheral hearing input. Early stages may involve cochlear hyperexcitability, but chronic tinnitus is a CNS pathology. Patient populations are heterogenous, with varying comorbidities.

Heterogenity of current models and paradigms

Translational drug development efforts in tinnitus are hampered by heterogeneous models and testing paradigms\(^1\), as well as lack of validated translational endpoints\(^2\).

Ongoing efforts at Sensorion

Validation of reproducible induction, testing and analysis paradigms for tinnitus models using noise and ototoxicity as induction methods. Druggable targets with scientific and pathophysiological rationale identified for testing.

Investment in the field (Research & Outcome Measures):

- Member and partner organization for TINNET (EU COST action, http://tinnet.tinnitusresearch.net/)
 - Selected industry representative for COMIT’ID (Core Outcome Measures in Tinnitus: International Delphi)
- Member and partner organization for ESIT (Marie Curie ETN Tinnitus, https://esit.tinnitusresearch.net/)
 - Supervisory board member

\(^1\) Galazyuk & Hébert (2015) Front Neurology.

\(^2\) Cederroth, Dyhrfjeld-Johnsen & Langguth (in press) Exp Opin Emerg Drugs
Going forward, we seek the best complementary science, technology and industry minds through partnerships and collaborations to de-risk our transformational journey
A Clinical-Stage Biopharmaceutical Company Focused on Developing Novel Therapies to Restore, Treat, and Prevent Inner Ear Disorders

Sensorion profile

- Clinical-stage biopharmaceutical company
- 20 employees, 16 in R&D, Offices in Montpellier and Paris, INSERM spin-off in 2009
- A broad portfolio: 2 small molecules in phase II and embarking in a promising Gene Therapy program with Pasteur Institute
- Unique R&D technology Platform to expand understanding of the pathophysiology, etiology, biomarkers of inner ear related diseases

Inner ear: an attractive domain of expertise

- Significant unmet medical needs with little effective therapeutic options
- Big untapped market evaluated at 10B+
- An important Central Nervous System therapeutic area, recently attracting successful financing
- Will allow significant opportunities in Business Development & Licensing

A compelling and unique investment opportunity

- Scientific team, solid capabilities
- Strategic agreements with world class experts as Pasteur Institute and Cochlear LTD
- Attractive valuation

Positive momentum in the market

- Favourable regulatory environment with new FDA guidelines to support Gene Therapy development
- Capital availability to enable execution of several GT programs
- Active financial environment (IPO and M&A) demonstrating appetite for GT
Relentlessly Focus On Three Medical Priorities to Deliver on Our Promise

PREVENTION
possibilities

TREATMENT
options

RESTORATIVE
Breakthrough Gene Therapies

Highly Specialized R&D team + Best modality to affect biology

A Better Future for People Living with Inner Ear Diseases
Thank You

Sensorion
The Inner Ear Diseases company
Caring for Inner Ear Disability